ISSN 2330-717X

Curiosity’s First Color Image Of Martian Landscape

By

NASA has released new photographs from its Mars rover Curiosity landing.

In the latest image, the view of the landscape to the north of NASA’s Mars rover Curiosity was acquired by the Mars Hand Lens Imager (MAHLI) on the afternoon of the first day after landing. (The team calls this day Sol 1, which is the first Martian day of operations; Sol 1 began on Aug. 6, 2012.)

In the distance, the image shows the north wall and rim of Gale Crater. The image is murky because the MAHLI’s removable dust cover is apparently coated with dust blown onto the camera during the rover’s terminal descent. Images taken without the dust cover in place are expected during checkout of the robotic arm in coming weeks.

This view of the landscape to the north of NASA's Mars rover Curiosity was acquired by the Mars Hand Lens Imager (MAHLI) on the afternoon of the first day after landing. (The team calls this day Sol 1, which is the first Martian day of operations; Sol 1 began on Aug. 6, 2012.)  Image credit: NASA/JPL-Caltech/Malin Space Science Systems
This view of the landscape to the north of NASA’s Mars rover Curiosity was acquired by the Mars Hand Lens Imager (MAHLI) on the afternoon of the first day after landing. (The team calls this day Sol 1, which is the first Martian day of operations; Sol 1 began on Aug. 6, 2012.) Image credit: NASA/JPL-Caltech/Malin Space Science Systems

The MAHLI is located on the turret at the end of Curiosity’s robotic arm. At the time the MAHLI Sol 1 image was acquired, the robotic arm was in its stowed position. It has been stowed since the rover was packaged for its Nov. 26, 2011, launch.

The MAHLI has a transparent dust cover. This image was acquired with the dust cover closed. The cover will not be opened until more than a week after the landing.

When the robotic arm, turret, and MAHLI are stowed, the MAHLI is in a position that is rotated 30 degrees relative to the rover deck. The MAHLI image shown here has been rotated to correct for that tilt, so that the sky is “up” and the ground is “down”.

When the robotic arm, turret, and MAHLI are stowed, the MAHLI is looking out from the front left side of the rover. This is much like the view from the driver’s side of cars sold in the USA.

The main purpose of Curiosity’s MAHLI camera is to acquire close-up, high-resolution views of rocks and soil at the rover’s Gale Crater field site. The camera is capable of focusing on any target at distances of about 0.8 inch (2.1 centimeters) to infinity. This means it can, as shown here, also obtain pictures of the Martian landscape.

Scene of a Martian Landing

The four main pieces of hardware that arrived on Mars with NASA’s Curiosity rover were spotted by NASA’s Mars Reconnaissance Orbiter (MRO). The High-Resolution Imaging Science Experiment (HiRISE) camera captured this image about 24 hours after landing. The large, reduced-scale image points out the strewn hardware: the heat shield was the first piece to hit the ground, followed by the back shell attached to the parachute, then the rover itself touched down, and finally, after cables were cut, the sky crane flew away to the northwest and crashed. Relatively dark areas in all four spots are from disturbances of the bright dust on Mars, revealing the darker material below the surface dust.

Around the rover, this disturbance was from the sky crane thrusters, and forms a bilaterally symmetrical pattern. The darkened radial jets from the sky crane are downrange from the point of oblique impact, much like the oblique impacts of asteroids. In fact, they make an arrow pointing to Curiosity.

This image was acquired from a special 41-degree roll of MRO, larger than the normal 30-degree limit. It rolled towards the west and towards the sun, which increases visible scattering by atmospheric dust as well as the amount of atmosphere the orbiter has to look through, thereby reducing the contrast of surface features. Future images will show the hardware in greater detail. Our view is tilted about 45 degrees from the surface (more than the 41-degree roll due to planetary curvature), like a view out of an airplane window. Tilt the images 90 degrees clockwise to see the surface better from this perspective. The views are primarily of the shadowed side of the rover and other objects.

Orbiter Images NASA’S Latest Additions To Martian Landscape

Late Monday night, an image from the High Resolution Imaging Science Experiment (HiRISE) camera aboard NASA’s Mars Reconnaissance Orbiter captured the Curiosity rover and the components that helped it survive its seven-minute ordeal from space to its present location in Mars’ Gale Crater.

“This latest image is another demonstration of the invaluable assistance the Mars Reconnaissance Orbiter team and its sister team with the Mars Odyssey orbiter have provided the Curiosity rover during our early days on the Red Planet,” said Mike Watkins, mission manager for the Mars Science Laboratory mission at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif. “The image not only satisfies our curiosity, it can provide important information on how these vital components performed during entry, descent and landing, and exactly locate the rover’s touchdown site within Gale Crater.”

The four main pieces of hardware that arrived on Mars with NASA's Curiosity rover were spotted by NASA's Mars Reconnaissance Orbiter (MRO). Image credit: NASA/JPL-Caltech/Univ. of Arizona
The four main pieces of hardware that arrived on Mars with NASA’s Curiosity rover were spotted by NASA’s Mars Reconnaissance Orbiter (MRO). Image credit: NASA/JPL-Caltech/Univ. of Arizona

The Curiosity rover is in the center of the image. To the right, approximately 4,900 feet away, lies the heat shield, which protected the rover from 3,800-degree-Fahrenheit temperatures encountered during its fiery descent. On the lower left, about 2,020 feet away, are the parachute and back shell. The parachute has a constructed diameter of 71 feet and an inflated diameter of 51 feet. The back shell remains connected to the chute via 80, 165-foot-long suspension lines. To the upper-left, approximately 2,100 feet away from the rover, is a discoloration of the Mars surface consistent with what would have resulted when the rocket-powered Sky Crane impacted the surface.

“This is the first of what I imagine will be many portraits HiRISE will be taking of Curiosity on the surface of Mars,” said Sarah Milkovich, HiRISE investigation scientist at JPL. “The image was taken Monday at about 10:30 p.m. Pacific when MRO was at an altitude of about 186 miles and we are getting resolution on the surface down to 1.3 feet per pixel.”

As more of Curiosity’s instruments are coming online, more “first images” are being downlinked from the rover’s 17 cameras. The latest to come in is from the Mars Hand Lens Imager or MAHLI. The focusable color camera is located on the tool-bearing turret at the end of Curiosity’s robotic arm. Researchers will use it for magnified, close-up views of rocks and soils and also for wider scenes of the ground, the landscape or even the rover.

“It is great to have our first MAHLI image under our belt,” said Ken Edgett, principal investigator for MAHLI from Malin Space Science in San Diego. “We tested the focus mechanism and imager and the whole system is looking good. We are looking forward to getting up close and personal with Mars.”

The team plans for Curiosity checkout Tuesday include raising the rover’s mast and continued testing of the high-gain antenna.

Curiosity carries 10 science instruments with a total mass 15 times as large as the science payloads on the Mars rovers Spirit and Opportunity. Some of the tools, such as a laser-firing instrument for checking rocks’ elemental composition from a distance, are the first of their kind on Mars. Curiosity will use a drill and scoop which is located at the end of its robotic arm to gather soil and powdered samples of rock interiors, then sieve and parcel out these samples into the rover’s analytical laboratory instruments.

To handle this science toolkit, Curiosity is twice as long and five times as heavy as Spirit or Opportunity. The Gale Crater landing site places the rover within driving distance of layers of the crater’s interior mountain. Observations from orbit have identified clay and sulfate minerals in the lower layers, indicating a wet history.

HiRISE is operated by the University of Arizona in Tucson. The instrument was built by Ball Aerospace & Technologies Corp. in Boulder, Colo. The Mars Reconnaissance Orbiter and Mars Exploration Rover projects are managed by JPL for NASA’s Science Mission Directorate. JPL is a division of the California Institute of Technology in Pasadena. Lockheed Martin Space Systems in Denver, built the orbiter.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.