ISSN 2330-717X

Climate Change Threatening Iran’s Great Salt Lake

By

Iran’s Lake Urmia is facing a dire future — these dire findings are the result of a new study by researchers from the International Institute for Applied Systems Analysis (IIASA) in Austria and Wageningen University in the Netherlands, which examines the potential of a proposed action plan to save the lake under future scenarios of climate change. The study, published last week in the journal Science of the Total Environment, shows that under scenarios of moderate or intense climate change, the current plan will not be sufficient to protect the lake.

“This means that urgent actions are needed to save the lake. It involves both regional action to limit human water use, and global action to limit greenhouse-gas concentration,” said Somayeh Shadkam of Wageningen University, who led the study.

Lake Urmia used to be the second largest hypersaline lake in the world. Located in the northwest of Iran near the Turkish border, the lake is an important, internationally recognized natural area designated by the Convention on Wetlands of International Importance, called the Ramsar Convention, and a UNESCO Biosphere Reserve. It is a home to many species, including a unique species of brine shrimp. The Urmia basin also supports a variety of agricultural production systems and activities as well as livestock.

“Lake Urmia is of central strategic importance in Iran and the region, and this research is an important contribution in the collaboration between IIASA and the country,” said IIASA Director General and CEO Professor Dr. Pavel Kabat, who serves as PhD advisor to Shadkam, and coordinated the project.

Lowest recorded level

The surface area of Lake Urmia has declined by 80% to the lowest recorded level over the last two decades. As a result, the salinity of the lake has sharply increased. This is disturbing the ecosystems, local agriculture and livelihoods, regional health, as well as tourism. The socio-environmental consequences are similar or even larger than those of the Aral Sea disaster. Thousands of people around the lake have already abandoned the area. It has been estimated that people living within 500 square kilometers of the lake are at risk, which could amplify economic, political, and ethnic tensions in this already volatile region.

The lake is drying out because of a combination of factors. Over the past decades, agricultural area has tripled. This resulted in a high irrigation water demand, surface flow diversions and groundwater extraction. Efficient water management stayed behind. During the same period, a significant decrease in precipitation and an increasing trend in average maximum temperature took place.

Restoration plan

A new water management plan to rescue the lake has been proposed, entailing a rapid 40% decline in use of irrigation water. It replaces a former plan which intended to develop reservoirs and irrigation. However, none of these water management plans, which have large socioeconomic impacts, have been assessed under future changes in climate and water availability. In the new study, Shadkam and colleagues explored the impacts of water resources management plans on the inflow into Lake Urmia during the 21st century as part of her PhD research.

First she quantified how much flow would be required to preserve Lake Urmia. Then the researchers developed future projections of total inflow to the lake, using a hydrological model forced with different climate model outputs from the lowest and highest climate change scenarios and different water management plans, as well as the naturalized (without irrigation and reservoirs) situation. The researchers then compared the outcomes to the estimated environmental flow requirements.

Need for action

The results of the new study show that the proposed irrigation plan can help to preserve the lake only if the future climate change will be very limited.

The results also indicate that for the whole range of climate change scenarios, the area will have less water available in the future. “This is an important message not only for the Urmia basin, but also for the wider region. Water scarcity is increasing in this area and we need to adapt,” Shadkam said.

Recently, Shadkam presented the research outcomes to the committee engaged with the rescue of Lake Urmia. The committee invited the research team to visit Iran to discuss their approach to rescue the lake and collaborate on the issue.

Click here to have Eurasia Review's newsletter delivered via RSS, as an email newsletter, via mobile or on your personal news page.

One thought on “Climate Change Threatening Iran’s Great Salt Lake

  • April 28, 2016 at 4:56 am
    Permalink

    In the US the experience Iran is having with Lake Urmia has been duplicated by the Salton Sea and in the Middle East by the Dead Sea. The human race is getting very close to a world in which water will be more valuable than any other commodity, including oil and natural gas. It is well known that the Ogallala Aquifer is being drained dry by center-pivot irrigation under the ag land of the midwestern states, but nothing is being done to change our agricultural practices and nothing is being done to restrain fracking, which we know contaminates drinking water aquifers. The world of “If we can make a profit, exploit the resource” has to be abolished. We can no longer afford such insane wastefulness. Globalized capitalism must be abolished; in a world of increasing scarcity it’s an economic model we can no longer afford.

    Reply

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.